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Abstract. Although distributional models of word meaning have been
widely used in Information Retrieval achieving an effective representation
and generalization schema of words in isolation, the composition of words
in phrases or sentences is still a challenging task. Different methods have
been proposed to account on syntactic structures to combine words in
term of algebraic operators (e.g. tensor product) among vectors that
represent lexical constituents.
In this paper, a novel approach for semantic composition based on space
projection techniques over the basic geometric lexical representations is
proposed. In the geometric perspective here pursued, syntactic bi-grams
are projected in the so called Support Subspace, aimed at emphasizing the
semantic features shared by the compound words and better capturing
phrase-specific aspects of the involved lexical meanings. State-of-the-art
results are achieved in a well known benchmark for phrase similarity
task and the generalization capability of the proposed operators is in-
vestigated in a cross-linguistic scenario, i.e. in the English and Italian
Language.

1 Introduction

With the rapid development of the World Wide Web and the spread of human-
generated contents, Information Retrieval (IR) has many challenges in discover-
ing and exploiting those rich and huge information resources. Semantic search [3]
improves search precision and recall by understanding user’s intent and the con-
textual meaning of concepts in documents and queries. Semantic search extends
the scope of traditional information retrieval paradigms from mere document
retrieval to entity and knowledge retrieval, improving the conventional IR meth-
ods by looking at a different perspective, i.e. the meaning of words. However,
the language richness and its intrinsic relation to the world and human activities
make semantic search a very complex task. In a IR system, a user can express
its specific user need with a natural language query like ”... buy a car ...”. This
request can be satisfied by documents expressing the abstract concept of buying
something and in particular the focus of the action is a car. This information



can be expressed inside a document collection in many different forms, e.g. the
quasi-synonymic expression ”... purchase an automobile ...”. Accounting on lexi-
cal overlap with respect to the original query, a Bag-of-word based system would
instead retrieve different documents, containing expressions such as ”... buy a
bag ...” or ”... drive a car ...”. A proper semantic generalization is thus needed,
in order to derive the correct composition of the target words, i.e. an action like
buy and an object like car.

While compositional approaches to language understanding have been largely
adopted, semantic tasks are still challenging for research in Natural Language
Processing. Traditional logic-based approaches (as the Montague’s approach in
[17] and [2]) rely on Frege’s principle for which the meaning of a sentence is a
function of the meanings of its parts [10]. The resulting theory allows an algebra
on the discrete propositional symbols to represent the meaning of arbitrarily
complex expressions. Despite the fact that they are formally well defined, logic-
based approaches have limitations in the treatment of ambiguity, vagueness and
cognitive aspects intrinsically connected to natural language.

On the other hand, distributional models early introduced by Schütze [21]
rely on the Word Space model. Here semantic uncertainty is managed through
the statistical analysis of large scale corpora. Linguistic phenomena are then
modeled according to a geometrical perspective, i.e. points in a high-dimensional
space representing semantic concepts, such as words, and can be learned from
corpora, in such a way that similar, or related, concepts are near each another
in the space. Methods for constructing representations for phrases or sentences
through vector composition has recently received a wide attention in literature
(e.g. [15, 23]). However, vector-based models typically represent isolated words
and ignore grammatical structure [23]. Such models have thus a limited capabil-
ity to model compositional operations over phrases and sentences.

In order to overcome these limitations a so-called compositional distribu-
tional semantics (DCS) model is needed and its development is still object of
on-going and controversial research (e.g. [5], [11]). A compositional model based
on distributional analysis should provide semantic information consistent with
the meaning assignment that is typical of human subjects. For example, it should
support synonymy and similarity judgments on phrases, rather than only on
single words. The objective should be a measure of similarity between quasi-
synonymic complex expressions, such as ”... buy a car ...” vs. ”... purchase an
automobile ...”. Another typical benefit should be a computational model for
entailment, so that the representation for ” ... buying something ...” should be
implied by the expression ”... buying a car ...” but not by ”... buying time ...”.
Distributional compositional semantics (DCS) need thus a method to define: (1)
a way to represent lexical vectors u and v, for words u, v dependent on the phrase
(r, u, v) (where r is a syntactic relation, such as verb-object), and (2) a metric
for comparing different phrases according to the selected representations u, v.
Existing models are still controversial and provide general algebraic operators
(such as tensor products) over lexical vectors.



In this paper, we focus on the geometry of latent semantic spaces by propos-
ing a novel distributional model for semantic composition. The aim is to model
semantics of syntactic bigrams as projections in lexically-driven subspaces. Dis-
tances in such subspaces (called Support Spaces) emphasize the role of common
features that constraint in ”parallel” the interpretation of the involved lexical
meanings and better capture phrase-specific aspects. In the following evaluations,
operators will be employed to compose word pairs involved in specific syntactic
structures. This resulting compositions will be evaluated according two different
perspectives. First, similarity among compositions will be evaluated with respect
to human annotators’ judgments. Then, the operators generalization capability
will be measured in order to prove their applicability in semantic search complex
systems. Moreover the robustness of this Support Spaces based will be confirmed
in a cross-linguistic scenario, i.e. in the English and Italian Language.

While Section 2 discusses existing methods of compositional distributional
semantics, Section 3 presents our model based on support spaces. Experiments
in Section 4 are used to show the beneficial impact of the proposed model and
the contribution to semantic search systems. Finally, Section 5 derives the con-
clusions.

2 Related work

While compositional semantics allows to govern the recursive interpretation of
sentences or phrases, traditional vector space models (as in IR [20]) and, mostly,
semantic space models, such as LSA ([7, 13]), represent lexical information in
metric spaces where individual words are represented according to the distri-
butional analysis of their co-occurrences over a large corpus. Such models are
based on the distributional hypotesis which assumes that words occurring within
similar contexts are semantically similar (Harris in [12]).

Semantic spaces have been widely used for representing the meaning of words
or other lexical entities (e.g. [23]), with successful applications in lexical disam-
biguation ([22]) or harvesting thesauri (as in Lin [14]). In this work we will refer
to the so-called word-based spaces, in which words are represented by proba-
bilistic information of their co-occurences calculated in a fixed range window over
all sentences. In such models, vector components correspond to the entries f of
the vocabulary V (i.e. to features that are individual words). Weigths are associ-
ated with each component, using different estimators of their correlation. In some
works (e.g. [15]) pure co-occurrence counts are adopted as weighting functions
fi, where i = 1, ..., N and N = |V |; in other works (e.g. [18]), statistical func-
tions like the pointwise mutual information between the target word w and the

captured co-occurences in the window are used, i.e. pmi(w, i) = log2
p(w,fi)

p(w)·p(fi) .

A vector w = (pmi1, ..., pmiN ) models a word w and it is thus built over all
the words fi belonging to the dictionary. When w and f never co-occur in any
window their pmi is by default set to 0. Weights of vector components depend
on the size of the co-occurrence window and express the global statistics in the
entire corpus. Larger values of the adopted window size aim to capture topical



similarity (as in the document based models of IR), while smaller sizes (usu-
ally between the ±1-3 surrounding words) lead to representation better suited
for paradigmatic similarities between word vectors w. Cosine similarity between

vectors w1 and w2 is modeled as the normalized scalar product, i.e. 〈w1,w2〉
‖w1‖‖w2‖

that expresses topical or paradigmatic similarity according to the different rep-
resentations (e.g. window sizes). Notice that dimensionality reduction methods,
such as LSA [7, 13] are also applied in some studies, to capture second order
dependencies between features f , i.e. applying semantic smoothing to possibly
sparse input data. Applications of an LSA-based representation to Frame Induc-
tion or Semantic Role Labeling are presented in [19] and [6], respectively.

The main limitation of distributional models of lexical semantic is their non-
compositional nature: they are based on statistics related to the occurences of
the individual words in the corpus. In such models, the semantic of topological
similarity functions is thus defined only for the comparison between individ-
ual words. That is the reason why distributional methods can not compute the
meanings of phrases (and sentences) as effectively as they do indeed over in-
dividual words. Distributional methods have been recently extended to better
account compositionality, in the so called distributional compositional semantics
(DCS) approaches. Mitchell and Lapata in [15] follow Foltz [9] and assume that
the contribution of the syntactic structure can be ignored, while the meaning
of a phrase is simply the commutative sum of the meanings of its constituent
words. More formally, [15] defines the composition p◦ = u ◦ v of vectors u and
v through an additive class of composition functions expressed by:

p+ = u + v (1)

This perspective clearly leads to a variety of efficient yet shallow models of
compositional semantics compared in [15]. For example pointwise multiplication
is defined by the multiplicative function:

p· = u� v (2)

where the symbol � represents multiplication of the corresponding components,
i.e. pi = ui · vi. Point-wise multiplication seems to best correspond with the
intended effects of syntactic interaction, as experiments in [15] demonstrate. In
[8], the concept of a structured vector space is introduced, where each word is
associated with a set of vectors corresponding to different syntactic dependencies.
Every word is thus expressed by a tensor, and tensor operations are imposed.

The main differences among these studies lies in (1) the lexical vector repre-
sentation selected (e.g. some authors do not even commit to any representation,
but generically refer to any lexical vector, as in [11]) as well as in (2) the adopted
compositional algebra, i.e. the system of operators defined over such vectors.
Generally, proposed operators do not depend on the involved lexical items, but
a general purpose algebra is adopted. Since compositional structures are highly
lexicalized, and the same syntactic relation triggers to very different semantic
relations with respect to the different involved words, a proposal that makes the
compositionality operators dependent on individual lexical vectors is hereafter
discussed.



3 A quantitative model for compositionality

In order to determine the semantic analogies and differences between two phrases,
such as ”... buy a car ...” and ”... buy time ...”, a distributional compositional
model is employed as follows. The involved lexicals are buy, car and time, while
their corresponding vector representation will be denoted by wbuy wcar and
wtime. The major result of most studies on DCS is the definition of the function
◦ that associates with wbuy and wcar a new vector wbuy car = wbuy ◦wcar.

We consider this approach misleading since vector components in the word
space are tied to the syntactic nature of the composed words and the new vector
wbuy car should not have the same type of the original vectors. Notice also that
the components of wbuy and wcar express all their contexts, i.e. interpretations,
and thus senses, of buy and car in the corpus. Algebric operations are thus open
to misleading contributions, brought by not-null feature scores of buyi vs. carj
(i 6= j) that may correspond to senses of buy and car that are not related to the
specific phrase ”buy a car”. On the contrary, in a composition, such as the verb-
object pair (buy, car), the word car influences the interpretation of the verb buy
and viceversa. The model here proposed is based on the assumption that this
influence can be expressed via the operation of projection into a subspace, i.e.
a subset of original features fi. A projection is a mapping (a selection function)
over the set of all features. A subspace generated by a projection function Π
local to the (buy, car) phrase can be found such that only the features specific
to the phrase meaning are selected and the irrelevant ones are neglected. The
resulting subspace has to preserve the compositional semantics of the phrase and
it is called support subspace of the underlying word pair.

Consider the bigram composed of the words Buy-Car Buy-Time

cheap::Adj consume::V
insurance::N enough::Adj

rent::V waste::V
lease::V save::In
dealer::N permit::N

motorcycle::N stressful::Adj
hire::V spare::Adj
auto::N save::V

california::Adj warner::N
tesco::N expensive::Adj

Table 1. Features correspond-
ing to dimensions in the k=10
dimensional support space of
bigrams buy car and buy time

buy and car and their vectorial representation
in a co-occurrence N−dimensional Word Space.
Table 1 reports the k = 10 features with the
highest contributions of the point wise product
of the pairs (buy,car) and (buy,time). The sup-
port space thus selects the most important fea-
tures for both words, e.g. buy.V and car.N. No-
tice that this captures the conjunctive nature of
the scalar product to which contributions come
from feature with non zero scores in both vec-
tors. It is clear that the two pairs give rise to dif-
ferent support subspaces: the main components
related with buy car refer mostly to the automo-
bile commerce area unlike the ones related with
buy time mostly referring to the time wasting or
saving. Similarity judgments about a pair can be thus better computed within
its support subspace.

More formally k−dimensional support subspace for a word pair (u, v) (with
k � N) is the subspace spanned by the subset of n ≤ k indexes Ik(u,v) =
{i1, ..., in} for which

∑n
t=1 uit · vit is maximal. Given two pairs the similarity



between syntactic equivalent words (e.g. nouns with nouns, verbs with verbs)
is measured in the support subspace derived by applying a specific projection
function. Compositional similarity between buy car and the latter pairs (e.g.
buy time) is thus estimated by (1) immersing wbuy and wtime in the selected
”. . . buy car . . . ” support subspace and (2) estimating similarity between corre-
sponding arguments of the pairs locally in that subspace. Therefore the similarity
between syntactic equivalent words (e.g. car with time) within these new sub-
space is measured.

Therefore given a pair (u, v), a unique matrix Mk
uv = (mk

uv)ij is defined for a
given projection Πk(u, v) into the k-dimensional support space of any pair (u, v)
according to the following definition:

(mk
uv)ij =

{
1 iff i = j ∈ Ik(u,v)

0 otherwise.
(3)

The vector ũ projected in the support subspace can be thus estimated through
the following matrix operation:

ũ = Πk(u, v) ũ = Mk
uvu (4)

A special case of the projection matrix is given when no k limitation is
imposed to the dimension and all the positive addends in the scalar product are
taken. Notice also that two pairs p1 = (u, v) and p2 = (u′, v′) give rise to two
different projections denoted by Mk

1 and Mk
2 and defined as:

(Left projection) Πk
1 = Πk(u,v) (Right projection) Πk

2 = Πk(u
′
,v

′
) (5)

It is also possible to define a unique symmetric projection Πk
12 corresponding to

the combined matrix Mk
12 as follows:

Mk
12 = (Mk

1 + Mk
2)− (Mk

1M
k
2) (6)

where the mutual components that satisfy Eq. 3 are employed as Mk
12.

As Π1 is the projection in the support subspace for the pair p1, it is possible to
immerse the latter pair p2 by applying Eq. 4. This results in the two vec-
tors Mk

1u
′
and the Mk

1v
′
. It follows that a compositional similarity judgment

between two phrase over the first pair support subspace can be expressed as:

Φ(◦)
p1

(p1, p2) = Φ
(◦)
1 (p1, p2) =

〈Mk
1u,M

k
1u

′〉∥∥Mk
1u
∥∥∥∥Mk

1u
′
∥∥ ◦ 〈Mk

1v,M
k
1v

′〉∥∥Mk
1v
∥∥∥∥Mk

1v
′
∥∥ (7)

where first cosine similarity between syntactically correlated vectors in the se-
lected support subspaces are computed and then a composition function ◦, such
as the sum or the product, is applied. Compositional function over the lat-
ter support subspace evoked by the pair p2 can be correspondingly denoted by

Φ
(◦)
2 (p1, p2). A symmetric composition function can thus be obtained as a com-

bination of Φ
(◦)
1 (p1, p2) and Φ

(◦)
2 (p1, p2) as:



Φ
(�)
12 (p1, p2) = Φ

(◦)
1 (p1, p2) � Φ(◦)

2 (p1, p2) (8)

where the composition function � (again the sum or the product) between the
similarities over the left and right support subspaces is applied. Notice how the
left and right composition operators (◦) may differ from the overall composition
operator �. More details are discussed in [1].

4 Experimental Evaluation

This experimental evaluation aims to estimate the effectiveness of the proposed
class of projection based methods in capturing similarity judgments over phrases
and syntactic structures. In particular, a first evaluation is carried out to measure
the correlation of the operator outcomes with judgments provided by human
annotators. The generalization capability of the operators is measured in the
second evaluation in order to prove their applicability in semantic search complex
systems. Moreover the latter experiments are carried out in a cross-language
setting, i.e. for english and italian datasets.

Two different word space areType First Pair Second Pair Rate

VO

support offer provide help 7
use knowledge exercise influence 5
achieve end close eye 1

AdjN

old person right hand 1
vast amount large quantity 7

economic problem practical difficulty 3

NN

tax charge interest rate 7
tax credit wage increase 5

bedroom window education officer 1

Table 2. Example of Mitchell and Lapata dataset
for the three syntactic relations verb-object (VO),
adjective-noun (AdjN) and noun-noun (NN)

derived for the different languages.
For English, the word space is
derived from the ukWak [4], a
web-based corpus consisting of
about 2 billion tokens. For Ital-
ian, the Italian Wikipedia cor-
pus1 has been employed. It con-
sists of about 200 million to-
kens and more than 10 million
sentences. The space construc-
tion proceeds from an adjacency
matrixM on which Singular Val-
ues decomposition ([7]) is then

applied. Part-of-speech tagged words have been collected from the corpus to re-
duce data sparseness. Then all target words tws occurring more than 200 times
are selected, i.e. more that 50,000 candidate features. Each column i of M rep-
resents a word w in the corpus. Rows model the target words tw, i.e. contain
the pmi values for the individual features fi, as captured in a window of size ±3
around tw. The most frequent 20,000 left and right features fi are selected, so
that M expresses 40,000 contexts. SVD is here applied to limit dimensionality
to N = 100.

4.1 Experiment I

The first evaluation is carried out over the dataset proposed by [16], which is part
of the GEMS 2011 Shared Evaluation. It consists of a list of 5,833 adjective-noun
(AdjN), verb-object (VO) or noun-noun (NN) pairs, rated with scores ranging from

1 The corpus is developed by the WaCky community and it is available in the Wacky
project web page at http://medialab.di.unipi.it/Project/QA/wikiCoNLL.bz2



1 to 7. In Table 2, examples of pairs and scores are shown. The correlation of
the similarity judgements outputed by a DCS model against the human judge-
ments is computed using Spearman’s ρ, a non-parametric measure of statistical
dependence between two variables proposed by [15].

Model AdjN NN VO

Mitchell&Lapata Word Space SVD
Additive .69 .70 .64
Multiplicative .38 .43 .42

Support Subspace[1]
Φ(+), Πk

12 (k=30) .70 .71 .63

Φ
(·)
12 , Φ

(+)
i , Πk

i (k=40) .68 .68 .64

Agreement among Human Subjects
Max .88 .92 .88
Avg .72 .72 .71

Table 3. Spearman’s ρ correlation coefficients across Mitchell and Lapata models and
the projection-based models proposed in Section 3. Word space refers to the source
spaces used as input to the LSA decomposition model.

Table 3 reports M&L performances in the first row, while in the last row the
max and the average interannotator agreement scores for the three categories
derived through a leave one-out resampling method are shown. Row 2 shows
Speraman’s correlation for support subspace models discussed in [1] that better
perform the distributional compositional task. Notice that different configura-
tions according to the models described in Section 3 are used. For example, the

system denoted as Φ
(·)
12 , Φ

(+)
i , Πk

i (k=40), corresponds to a multiplicative sym-

metric composition function Φ
(·)
12 (as for Eq. 8) based on left and right additive

compositions Φ
(+)
i (i = 1, 2 as in Eq. 7), derived through a projection Πk

i in
the support space limited to the first k = 40 components for each pair (as for
Eq. 5). The specific operator denoted by Φ(+), Πk

12 (k=30) achieves the best
performance over two out of three syntactic patterns (i.e. AdjN and NN) and is
close to the best figures for VO. Experimental evaluation shows that the best
performances are achieved by the projection based operators proposed. Notice
that the distributional composition between verbs and objects is a very tricky
task and results are in line with the additive model. Globally the results of our
models are close to the average agreement among human subjects, this latter
representing a sort of upper bound for the underlying task. It seems that latent
topics (as extracted through SVD from sentence and word spaces) as well as
the projections operators defined by support subspaces, provide a suitable com-
prehensive paradigm for compositionality. They seem to capture compositional
similarity judgements that are significantly close to human ones.
Notice that different settings of the projection operations can influence the per-
formances. A more exhaustive study of the possible settings is presented in [1].

4.2 Experiment II

In this second evaluation, the generalization capability of the employed operators
will be investigated. A verb (e.g. perform) can be more or less semantically



close to another verb (e.g. other verbs like solve, or produce) depending on the
context in which it appears. The verb-object (VO) composition specifies the verb’s
meaning by expressing one of its selectional preferences, i.e. its object. In this
scenario, we expect that a pair such as perform task will be more similar to
solve issue, as they both reflect an abstract cognitive action, with respect to
a pair like produce car, i.e. a concrete production. This kind of generalization
capability is crucial to effectively use this class of operators in a QA scenario by
enabling to rank results according to the complex representations of the question.
Moreover, both English and Italian languages can be considered to demonstrate
the impact in a cross language setting. Figure 4 shows a manually developed
dataset. It consists of 24 VO word pairs in English and Italian, divided into 3
different semantic classes: Cognitive, Ingest Liquid and Fabricate.

Semantic Class English Italian

Cognitive

perform task svolgere compito
solve issue risolvere questione

handle problem gestire problema
use method applicare metodo
suggest idea suggerire idea

determine solution trovare soluzione
spread knowledge divulgare conoscenza
start argument iniziare ragionamento

Ingest Liquid

drink water bere acqua
ingest syrup ingerire sciroppo

pour beer versare birra
swallow saliva inghiottire saliva
assume alcohol assumere alcool

taste wine assaggiare vino
sip liquor assaporare liquore
take coffee prendere caff

Fabricate

produce car produrre auto
complete construction completare costruzione

fabricate toy fabbricare giocattolo
build tower edificare torre

assemble device assemblare dispositivo
construct building costruire edificio

manufacture product realizzare prodotto
create artwork creare opera

Table 4. Cross-linguistic dataset

This evaluation aims to measure how the proposed compositional operators
group together semantically related word pairs, i.e. those belonging to the same
class, and separate the unrelated pairs. Figure 1 shows the application of two
models, the Additive (eq. 1) and Support Subspace (Eq. 8) ones that achieve
the best results in the previous experiment. The two languages are reported in
different rows. Similarity distribution between the geometric representation of
verb pair, with no composition, has been investigated as a baseline. For each lan-
guage, the similarity distribution among the possible 552 verb pairs is estimated
and two distributions of the infra and intra-class pairs are independently
plotted. In order to summarize them, a Normal Distribution N(µ, σ2) of mean
µ and variance σ2 are employed. Each point represents the percentage p(x) of
pairs in a group that have a given similarity value equal to x. In a given class,
the VO-VO pairs of a DCS operator are expected to increase this probability with
respect to the baseline pairs V-V of the same set. Viceversa, for pairs belonging
to different classes, i.e. intra-class pairs. The distributions for the baseline



control set (i.e. Verbs Only, V-V) are always depicted by dotted lines, while
DCS operators are expressed in continuous line.

Notice that the overlap between the curves of the infra and intra-class
pairs corresponds to the amount of ambiguity in deciding if a pair is in the
same class. It is the error probability, i.e. the percentage of cases of one group
that by chance appears to have more probability in the other group. Although
the actions described by different classes are very different, e.g. Ingest Liquid

vs. Fabricate, most verbs are ambiguous: contextual information is expected
to enable the correct decision. For example, although the class Ingest Liquid

is clearly separated with respect to the others, a verb like assume could well be
classified in the Cognitive class, as in assume a position.
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Fig. 1. Cross-linguistic Gaussian distribution of infra (red) and inter (green) clusters
of the proposed operators (continous line) with respect to verbs only operator (dashed
line)

The outcome of the experiment is that DCS operators are always able to
increase the gap in the average similarity of the infra vs. intra-class pairs. It
seems that the geometrical representation of the verb is consistently changed as
most similarity distributions suggest. The compositional operators seem able to
decrease the overlap between different distributions, i.e. reduce the ambiguity.

Figure 1 (a) and (c) report the distribution of the ML additive operator,
that achieves an impressive ambiguity reduction, i.e. the overlap between curves
is drastically reduced. This phenomenon is further increased when the Support



Subspace operator is employed as shown in Figure 1 (b) and (d): notice how
the mean value of the distribution of semantically related word is significantly
increased for both languages.

The probability of error reduction can be computed against the control
groups. It is the decrease of the error probability of a DCS relative to the same
estimate for the control (i.e. V-V) group. It is a natural estimator of the general-
ization capability of the involved operators. In Table 5 the intersection area for
all the models and the decrement of the relative probability of error are shown.
For English, the ambiguity reduction of the Support Subspace operator is of 91%
with respect to the control set. This is comparable with the additive operator
results, i.e. 92.3%. It confirms the findings of the previous experiment where the
difference between these operators is negligible. For Italian, the generalization
capability of support subspace operator is more stable, as its error reduction is
of 62.9% with respect to the additive model, i.e. 54.2%.

English Italian

Model
Probability Ambiguity Probability Ambiguity

of Error Decrease of Error Decrease

VerbOnly .401 - .222 -

Additive .030 92.3% .101 54.2%

SupportSubspace .036 91.0% .082 62.9%
Table 5. Ambiguity reduction analysis

5 Conclusions

In this paper, a distributional compositional semantic model based on space projection
guided by syntagmatically related lexical pairs is defined. Syntactic bi-grams are here
projected in the so called Support Subspace and compositional similarity scores are
correspondingly derived. This represents a novel perspective on compositional models
over vector representations with respect to shallow vector operators (e.g. additive or
multiplicative operations) as proposed in literature, e.g. in [16]. The presented approach
focuses on selecting the most important components for a specific word pair involved
in a syntactic relation in order to have a more accurate estimator of their similarity.

The proposed method have been evaluated over the well known dataset in [16]
achieving results close to the average human interannotator agreement scores. A first
applicability study of such compositional models in typical IR systems was carried
out. The operators’ generalization capability was measured proving that compositional
operators can effectively separate phrase structure in different semantic clusters. The
robustness of such operators has been also confirmed in a cross-linguistic scenario, i.e.
in the English and Italian Language. Future work on other compositional prediction
tasks (e.g. selectional preference modeling) and over different datasets will be carried
out to better assess and generalize the presented results.
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